[Pyro] Application - 1. Bayesian Regression 이해하기
·
분석 Python/Pyro
지난번에 문서를 보면서, 베이지안 학습 방식에 대한 개념과 Pyro 사용법에 대해서 알게 되었지만, 아직 실제로 이러한 방법을 현실에 어떻게 쓰는지 와닿지 않기 때문에 예제와 함께 알아보고자 한다. 이번에는 베이지안 회귀분석 예제를 보고 이해해보고자 한다. 참고 자료 2022.08.21 - [분석 Python/Pyro] - [Pyro] Application - 1. Bayesian Regression 이해하기 2022.08.28 - [분석 Python/Pyro] - [Pyro] Application - 2. Bayesian Regression 이해하기 2 2022.08.28 - [분석 Python/Pyro] - [Pyro] Application - 3. Gaussian Process 이해하기 2022.0..
[Pyro] 개념 파악 및 실습으로 알아보기
·
분석 Python/Pyro
요즘 점점 결과가 나올 때 결과에 대한 불확실성에 대한 설명을 많이 필요로 한다는 것을 느끼고 있다. 기존 방식을 사용하면, 근사적으로라도 불확실성을 측정하는 수단(DROPOUT, 등등)이 있는 것 같다. 이제 불확실성이라는 것이 중요한데, 이걸로 구현을 할 수도 있어야 하니, 많은 라이브러리 중에서 토치를 지금 주로 사용하고 있으니 Pyro라는 것으로 사용하고 예제를 보면서, 이 쪽 부분을 이해하고자 한다. 미적분이 변화의 속도에 대한 추론을 위한 수학인 것처럼, 확률은 불확실성 하에서 추론의 수학이다. 그것은 현대 기계 학습과 AI의 많은 부분을 이해하기 위한 통일된 이론적 프레임워크를 제공한다. 확률 언어로 구축된 모델은 복잡한 추론을 포착하고, 모르는 것을 알고, 감독 없이 데이터에서 구조를 밝힐..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다