관심있는 주제/Dimension Reduction(5)
-
Why You Should Always Use Feature Embeddings With Structured Datasets - 리뷰
정형 데이터에서 뉴럴 네트워크를 훈련시킬 때, 피처 임베딩은 중요한 것 중에 하나다. 이 기술은 NLP이외에는 좀 처럼 가르쳐 주지 않는다. 결과적으로 구조화 된 데이터 세트에서는 거의 완전히 무시됩니다. 그러나 이 단계를 스킵하는 것은 모델 정확성을 떨어트립니다. 이로 인해 XGBoost와 같은 그래디언트 강화 방법이 구조화 된 데이터 세트 문제에 대해 항상 우월하다는 잘못된 이해가 생겼습니다. 향상된 신경망을 임베딩하는 것은 종종 그래디언트 부스트 방법을 능가 할뿐만 아니라 이러한 임베딩이 추출 될 때 두 모델링 방법 모두 주요 개선 사항을 볼 수 있습니다. 이 기사는 다음 질문에 답할 것입니다. What are feature embeddings? How are they used with struct..
2021.02.28 -
여러가지 구조의 Autoencoders
일반적인 AutoEncoder는 feed forward NN 구조인데, 이 구조에서는 인풋을 hidden으로 만들고 다시 인풋으로 만드는데, 이 hidden을 잘 학습을 하는 것이 목적이라고 할 수 있다. 이 포스트에서는 여러 가지 AutoEncoder 구조에 대해서 설명을 한다. 만약 우리가 수백만장의 이미지가 있고 각 이미지는 약 2MB를 차지하는데, 우리는 1MB만 제공할 수 있다. 이처럼 데이터 차원을 잘 줄여야 할 때 어떻게 해야 할까? 이미지를 잘 보다 보면, 정보와 무관한 것이 많이 있을 때가 있다. 예를 들어 배경 같은 것은 사실 이미지랑 관계없지 않은가! 그래서 이렇게 쓸모없는 정보를 줄일 수만 있다면 우리는 1MB짜리로 줄일 수 있을 것이다. 그래서 결국 Hidden으로 저장해서 많은 ..
2019.06.13 -
UMAP은 어떻게 작동할까? (Uniform Manifold Approximation and Projection) - 3
https://data-newbie.tistory.com/171 UMAP은 어떻게 작동할까? (Uniform Manifold Approximation and Projection) - 2 https://data-newbie.tistory.com/169 UMAP은 어떻게 작동할까? (Uniform Manifold Approximation and Projection) - 1 저번에는 UMAP 실습 코드를 공유했는데, 이번에는 어떻게 작동하는지에 대해서, 공부해야 할.. data-newbie.tistory.com Finding a Low Dimensional Representation 그냥 사용만 하면 마음이 편한데, 알려고 하니 너무 어렵네요 예를 들면 통상적인 숫자 2 나 3에 퍼지의 사고방식을 도입하면 '..
2019.06.08 -
UMAP은 어떻게 작동할까? (Uniform Manifold Approximation and Projection) - 2
https://data-newbie.tistory.com/169 UMAP은 어떻게 작동할까? (Uniform Manifold Approximation and Projection) - 1 저번에는 UMAP 실습 코드를 공유했는데, 이번에는 어떻게 작동하는지에 대해서, 공부해야 할 필요성이 생겨서 글을 남기면서 공부하려고 한다. https://data-newbie.tistory.com/134?category=687142 UMAP (Unifor.. data-newbie.tistory.com 이번에는 실제 어떻게 적용이 되는지에 대한 내용이 있어서 확인을 해보려고 합니다. Adapting to Real World Data 앞에서는 설명된 접근 방식은 왜 근방 그래프 기반 접근 방식이 차원 축소를 수행할 때 매니..
2019.06.06 -
UMAP은 어떻게 작동할까? (Uniform Manifold Approximation and Projection) - 1
저번에는 UMAP 실습 코드를 공유했는데, 이번에는 어떻게 작동하는지에 대해서, 공부해야 할 필요성이 생겨서 글을 남기면서 공부하려고 한다. https://data-newbie.tistory.com/134?category=687142 UMAP (Uniform Manifold Approximation and Projection) 이것의 관심을 가진 이유는 원래 기본적인 T-SNE은 Visualization 용으로만 쓰는데, 실제로 이 패키지에서는 그 Embedding 한 것을 변수로 사용할 수 있다고 합니다. 그래서 train을 학습시켜서 그걸 다시 test에.. data-newbie.tistory.com https://umap-learn.readthedocs.io/en/latest/how_umap_wor..
2019.06.05