review(9)
-
논문 정리) Searching for Best Practices in Retrieval-Augmented Generation
SNS에서 요약된 내용과 이미지를 보고, 잘 정리가 되어있을 것 같아 정리해 보기로 하였습니다.이 논문을 통해 현재 최신 RAG는 어떻게 하는 지 알아보고자 합니다.논문 요약 RAG의 효과성: 최신 정보를 통합하고, 오류를 줄이며, 특히 전문 분야에서 답변의 질을 높이는 데 효과적입니다.현재 문제점: 많은 RAG 접근법이 복잡한 구현과 긴 응답 시간 문제를 가지고 있습니다.연구 목적: 다양한 RAG 방법과 조합을 조사하여 성능과 효율성을 균형 있게 유지하는 최적의 RAG 방식을 찾는 것입니다.멀티모달 검색: 시각적 입력에 대한 질문 답변 능력을 크게 향상시키고, “검색을 통한 생성” 전략을 통해 멀티모달 콘텐츠 생성을 가속화할 수 있습니다.도입부RAG란?RAG는 컴퓨터가 질문에 답할 때, 최신 정보를 찾..
2024.07.05 -
LLM) Chat Vector 논문 내용 및 실험해보기
논문 내용 정리 CP : Continual Pre-trainingPLM : Pre-trained Language Model 해당 논문은 우연히 LLAMA3에 CHAT VECTOR 논문 방식으로 튜닝한 모델이 있다고 해서 찾아보게 되었습니다.https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview beomi/Llama-3-Open-Ko-8B-Instruct-preview · Hugging FaceLlama-3-Open-Ko-8B-Instruct-preview Update @ 2024.04.24: Release Llama-3-Open-Ko-8B model & Llama-3-Open-Ko-8B-Instruct-preview Model Details L..
2024.04.26 -
TimeSeries) PatchTST 논문과 코드 살펴보기
2023.07.05 - [ML(머신러닝)/Time Series] - Transformer 기반 Time Series Forecast 논문 알아보기 2023.07.06 - [ML(머신러닝)/Time Series] - TimeSeries Forecast) Transformer보다 좋다는 LSTF-Linear 알아보기 2023.07.12 - [ML(머신러닝)/Time Series] - TimeSeries) PatchTST 논문과 코드 살펴보기 2023.10.13 - [분류 전체보기] - TimeSeries) TSMixer 논문 및 구현 살펴보기 A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. ICLR2023 해당 논문은 Are..
2023.07.12 -
진행중) swin transformer 알아보기
해당 논문을 보고자 하는 이유는 transformer를 사용하고, hierarchical 한 구조를 제시하고, 다양한 task에 적용 가능한 아키텍처인 것 같아 보려고 한다. 아래 DSBA에서 설명해주시는 영상을 보면 잘 설명해주기 때문에 참고하시면 될 것 같다. 이 논문은 컴퓨터 비전의 범용 백본 역할을 할 수 있는 Swin Transformer라는 새로운 비전 트랜스포머를 제시한다. 언어에서 비전으로 트랜스포머를 적응시키는 데 있어 어려움은 시각적 엔티티의 스케일의 큰 차이와 텍스트의 단어에 비해 이미지의 픽셀의 높은 해상도와 같은 두 도메인 간의 차이에서 발생한다. 물체의 크기(the scale of visual entities) 해상도(high resolution of pixels in image..
2022.06.10 -
논문 리뷰) A Generalist Agent (GATO)
구글에서 일반화되는 에이전트라는 주제로 낸 논문이다. 저자들은 일반화된 이러한 방식을 쓰면, 새롭게 들어온다기보다는 out of distribution에 있는 부분에 대해서도 잘할 것이라고 한다. 즉 완전히 새로운 것보다는 기존에 하던 것 중에서 조금 범위가 넘어가는 것에 대해서 잘할 수 있다고 하는 것 같다. 개인적으로 궁금했던 부분은 인풋과 아웃풋 그리고 손실 함수의 구성 방식이라서 이 부분을 주로 간단하게 보기로 했다. 인풋 기본적으로 인풋 같은 경우 continuous 한 것들을 discrete하게 만들거나 VIT 같은 방식을 도입해서 패치하는 식을 이용했다고 한다. 아직 그래프까지는 커버하는 아키텍처는 아닌 것 같다. continuous 1024개의 uniform unit (여기서는 값 자체보다..
2022.05.25 -
Paper) A Critical Study on Data Leakage in Recommender System Offline Evaluation 리뷰
정리 추천 모델에서 오프라인 설정에서 평가가 어려움 글로벌 타임 라인을 반영하지 않으면 data leakage 가 발생함. 예측 시간에 따라 교호 작용에서 학습할 수 있게 됨. 모든 모델이 data leakage를 통해 실제 영향을 주는 것을 확인하였음. 모델 BPR, NeuMF, SASRec, LightGCN 사용 데이터 MovieLens-25M, Yelp, Amazon-music, Amazon-eletronic 사용 평가 Leav Last Out 데이터 전략 채택 오프라인 모델 평가에서 타임 라인 방식을 제안 정리하자면... 핵심은 data leakage를 방지하기 위해선 time context를 반영하는 data split 전략을 해야 한다. 그렇지 않으면, 모델의 성능에 많은 영향을 줄 수 있고,..
2022.03.26 -
[Review] POMO: Policy Optimization with Multiple Optimafor Reinforcement Learnin
빠르게 아이디어만 보는 걸로 combinatorial optimization의 문제를 풀기 위해서 강화 학습을 적용함. 조합 최적화에서 일반적으로 NP-hard(Nondeterministic polynomial (NP)) 즉 다항시간내에 풀 수 없는 문제에 적용한다고 한다. NP-Hard는 TSP문제와 같이 모든 경우의 수를 일일히 확인해보는 방법 이외에는 다항식처럼 답을 풀이할 수 없는 문제들을 말한다고 한다. (외판원 문제) 저자는 Policy Optimization with Multiple Optima(POMO)를 도입한다고 한다. 그래서 여기서는 TSP(Traveling salesman) , capacitated vehicle routing (CVRP), and 0-1 knapsack (KP).과..
2020.12.18 -
[Review] Distral: Robust Multitask Reinforcement Learning 논문
2017년에 DeepMind에서 작성한 논문 대부분의 딥강화학습은 많은 시나리오에서, 그들의 적용 가능성이 제한되고, 복잡한 환경에 대해서 데이터 비효율적입니다. 데이터 효율성을 개선하기위한 한 가지 방향은 공유된 신경망 매개 변수를 사용한 멀티 태스킹 학습이며, 여기서 관련 작업 간의 전송을 통해 효율성을 개선 할 수 있습니다.그러나 실제로는 일반적으로 관찰되지 않습니다. 다른 작업의 기울기가 부정적으로 간섭하여 학습을 불안정하게 만들고 때로는 데이터 효율성이 떨어질 수 있기 때문입니다.또 다른 문제는 테스크간에 서로 다른 보상 체계가 있다는 것인데, 이는 공유 모델의 학습을 지배하는 한 테스크로 쉽게 이어질 수 있습니다. 그래서 딥마인드는 다중 테스크들의 조인트 트레이닝에 관한 새로운 접근을 제안한다..
2020.11.04 -
[Review / RL ] Deep Reinforcement Learning in Large Discrete Action Spaces
읽어보니, 현재 내가 찾고자 하는 주제와는 거리가 멀었지만, 추후에 살펴봐야 하는 부분이기에 한번 계속 읽어보기로 함. 아주 간략하게 말하면, 아주 큰 액션 공간을 기존 강화 학습 알고리즘에 맡겨서 학습을 시키는 것은 굉장히 어렵다고 말함. 그래서 저자는 이러한 문제를 해결하기 위해 pro-ation과 knn을 통해 action 선택을 축소한 것 같음. 그래서 본 저자의 논문에서는 state를 통해서 actor가 proto action인 action embedding을 얻게 되고, action embedding에 knn 방법론을 적용해서 action을 선택하는 2-step 전략을 제안함. Abstract 많은 수의 개별 행동이 있는 환경에서 추론할 수 있는 능력은 강화 학습을 더 큰 문제에 적용하는 데 ..
2020.10.24