GPT-OSS 모델 아키텍처 장점 및 비교 (Qwen3-30B 비교)
·
꿀팁 분석 환경 설정/GPTs
https://news.hada.io/topic?id=22449 GPT-OSS vs. Qwen3 및 GPT-2 이후 LLM 아키텍처 발전 상세 비교 | GeekNewsOpenAI가 gpt-oss-20b/120b 모델을 오픈 가중치로 공개함에 따라 2019년 GPT-2 이후 처음으로 OpenAI의 대형 공개 가중치 LLM이 등장함gpt-oss 모델은 GPT-2와 비교해 Dropout, Absolute Position Embedding, GELU 등을 효율news.hada.io https://magazine.sebastianraschka.com/p/from-gpt-2-to-gpt-oss-analyzing-the From GPT-2 to gpt-oss: Analyzing the Architectural Adv..
Python) 고객 생애 가치(CLV) 예측하기
·
분석 Python/구현 및 자료
고객 생애 가치를 예측할 때는 기존 회귀 모델 방식보다는 다른 특정 가정을 사용하고 있는 모델을 사용해야 한다. lifetimes이라는 패키지를 사용하는 예시를 해보고자 한다. 고객 생애 가치(CLV)는 고객이 인수부터 비즈니스와의 관계가 종료될 때까지 지출할 총금액입니다. 참고 부탁드립니다. 2022.03.17 - [분석 Python/구현 및 자료] - Python) 고객 생애 가치(CLV)에 대해서 알아보기 예측(Prediction)과 Calculation(계산)에 차이는 무엇일까요? CLV를 계산할 때, 오로지 현재 상황을 조사하고 분석만 할 수 있습니다. 그래서 우리는 고객에 새로운 상품을 살 때나 특정한 한계에 도달했을 때 추측할 수가 없습니다. 예측을 통해 우리는 기계 학습을 프로세스에 추가하..
tensorflow, keras) 정형 데이터를 이용하여 모델 만들기
·
분석 Python/Tensorflow
목차 umap에서 ParametricUMAP 을 사용하기 위해서는 keras 모델을 만들어야 하는데, 정형데이터를 임베딩해서 적용해보고 싶어서, 테스트를 하는 도중에 나온 결과물을 정리한다. 결론적으로 현재(22/01/08)는 umap에서 dict 데이터 타입을 지원하지 않고, 오로지 array 형태로만 가능하기 때문에, 사용할수가 없었다. 데이터를 one-hot으로 해서 하는 방법이 있겠지만, 차원 축소를 할 때 임베딩도 차원 축소할 때 학습시키고자 했기 때문에 좀 더 라이브러리가 개선되면 그때 다시 시도해봐야겠다. 아니면 일부 코드를 뜯어내서 수정하거나... 이러한 예시는 tensorflow에서 더 잘되어 있긴 하지만, 간단하게 구현해놔서 정리만 해둔다. 라이브러리 호출 import pandas as..
진행중) Model drift 자료 정리
·
관심있는 주제/뉴럴넷 질문
목차 Definition 모델은 생성된 시간때의 변수와 매개 변수를 기반으로 최적화되기 때문에 이는 기계 학습 모델에 문제를 제기합니다. 기계 학습 모델을 개발하는 동안 이루어진 공통적이고 때로는 부정확한 가정은 각 데이터 지점이 독립적이고 동일한 분포(i.i.d) 랜덤 변수라는 것입니다. 어려운 말로 표현하면, 환경의 변화로 인해 모형의 예측 검정력이 저하되어 변수 간의 관계가 저하되는 것을 말합니다. 위의 예를 참조하면 스팸 전자 메일의 표시 변경으로 인해 몇 년 전에 생성된 부정 탐지 모델이 저하될 수 있습니다. 즉, 시간이 지남에 따라서 기계 학습 모델의 정확도의 상실은 모델 드리프트(model drifit)로 정의됩니다. 크게 2가지 광범위한 범주류 분류할 수 있다고 합니다. Concept Dr..
[변수 생성] AutoEncoder로 파생변수 만들기 -2 (모델링 파트) Catboost
·
분석 Python/Data Preprocessing
https://data-newbie.tistory.com/163 AutoEncoder로 파생변수 만들기 데이터 분석을 하다보면, 새로운 파생변수를 만들어야 할 때가 있다. 개인적으로 나도 그러한 부분에 관심이 있어서 여래개로 포스팅을 했는데, 한번 보시면 도움이 될 것 같다. https://data-newbie.tistory.com/.. data-newbie.tistory.com ## 모델링 파트 이전에 AutoEncoder에서 얻은 Code값을 이용해서 모델링을 해봤습니다. 모델은 tree-based model 중에서 그나마 Parameter에 크게 의존하지 않는다는 catboost로 하였습니다. 궁금하신분은 https://data-newbie.tistory.com/131?category=750846 ..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다