Why Do GANs Need So Much Noise? - 리뷰
GAN에 왜 그렇게 많은 노이즈가 필요한가?라는 주제로 미디엄 글이 있어서, GAN 쪽에서 이런 원론적인 것에 대해 관심이 많기 때문에 읽어보려고 한다. GAN (Generative Adversarial Networks)은 오래된 "실제" 샘플로써 제공하여 새로운 "가짜"샘플을 생성하는 도구이다. 이 샘플들은 이 샘플은 실제로 무엇이든 될 수 있습니다: 손으로 그린 숫자, 얼굴 , 손으로 그린 숫자, 얼굴 사진, 표현주의 그림 이것을 하기 위해서, GANs는 original dataset 하에서 기존 분포를 학습한다. 학습을 통하여, 생성자는 분포를 근사하고 반면에 판별자는 무엇이 잘 못되었는지를 말해준다. 그리고 이 2개가 교호하면서, arms race를 통해서 향상한다. 분포로부터 랜덤 샘플들을 뽑아..
2020.03.03