LLM) Mixed-Precision 개념 및 학습 방법 알아보기
·
관심있는 주제/LLM
LLM 같은 거대 모델을 학습할 때는 학습 속도를 어떻게 빠르게 할지가 중요합니다. 하지만 학습을 하다 보면 필요한 리소스 역시 증가해서, 이러한 리소스를 줄이면서 학습하는 것에 대한 연구들이 진행되고 있습니다. 이번에는 실제로 이러한 방법을 많이 사용하는 것 같아서 어떻게 동작하는 지 알아보고자 내용을 정리하려고 합니다. 그중에서 나온 게 바로 더 낮은 정밀도를 사용하는 방법에 대한 것이 나왔습니다. 일단 기존에 우리가 NN 모델을 학습할 때는 전통적으로 IEEE 단정밀도 형식(FP32)을 사용했습니다. 여기서는 FP32를 다 쓰는 게 아니라 혼합된 정밀도(Mixed Precision)를 쓰면 더 효율적이라는 겁니다 즉 FP32 와 FP16을 같이 써서 극복하자입니다. Sign : 부호 / Expone..
tf.data로 데이터 파이프라인 만들고 추론하는 것 까지 해보기
·
분석 Python/Tensorflow
광고 한번만 눌러주세요 ㅎㅎ 블로그 운영에 큰 힘이 됩니다. 예전에 tf.data로 인풋 파이프라인을 만들고, 모델을 만든 뒤, 모델을 저장해서 사용해봤는데, 추론 결과가 계속 동일한 이상한 현상이 발견했다. 그래서 오랜만에 tf.data도 다시 공부하고 모델 학습 후 저장한 것을 다른 스크립트에서 돌릴 때 어떻게 했는지에 대해서 공유한다. 일단은 정확한 답은 아닐 수 있지만, 충분히 사용할만할 것 같다고 생각한다. 일단 중요한 것은 데이터 처리 이후니까 전처리 단계는 가볍게 패스 개인적으로 initializer를 사용하는 것을 선호한다. tf.data에서는 batch_size를 정해줘야하는데, 이 부분을 빈 홀더로 남겨놓고, 전체 추론할 때는 바꾸면서 사용할 수 있게 했다. import tensorfl..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다