[ Python ] gumbel softmax 알아보기
·
분석 Python/Tensorflow
도움이 되셨다면, 광고 한 번만 눌러주세요. 블로그 관리에 큰 힘이 됩니다 :) 예전에 gumbel softmax 관련 영상을 보고 관련된 자료도 찾아봤자만, 이해가 안 됐고 당시에 코드도 Tensorflow로 많이 없어서 포기했다가, 최근에 다시 봐야 할 것 같아서 여러 코드 구현물을 찾고 내용을 다시 이해해보려고 한다. 일반적으로 DNN을 학습시키는 것은 모델을 구성하고 Loss를 정의한 다음에 gradient에 따라 점진적인 학습을 한다. 그러나 때 때로 이것은 랜덤 구성요소를 규합시키는 아키텍처에서는 쉽지 않다. forwad pass는 더 이상 인풋과 가중치들의 deterministic function이 아니다. 랜덤 구성요소는 샘플링하는 수단으로 stochasticity를 도입한다. 샘플링한 것..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다