[Review] Distral: Robust Multitask Reinforcement Learning 논문
·
관심있는 주제/RL
2017년에 DeepMind에서 작성한 논문 대부분의 딥강화학습은 많은 시나리오에서, 그들의 적용 가능성이 제한되고, 복잡한 환경에 대해서 데이터 비효율적입니다. 데이터 효율성을 개선하기위한 한 가지 방향은 공유된 신경망 매개 변수를 사용한 멀티 태스킹 학습이며, 여기서 관련 작업 간의 전송을 통해 효율성을 개선 할 수 있습니다.그러나 실제로는 일반적으로 관찰되지 않습니다. 다른 작업의 기울기가 부정적으로 간섭하여 학습을 불안정하게 만들고 때로는 데이터 효율성이 떨어질 수 있기 때문입니다.또 다른 문제는 테스크간에 서로 다른 보상 체계가 있다는 것인데, 이는 공유 모델의 학습을 지배하는 한 테스크로 쉽게 이어질 수 있습니다. 그래서 딥마인드는 다중 테스크들의 조인트 트레이닝에 관한 새로운 접근을 제안한다..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다