LabelEncoder new class 대처하기
·
분석 Python/Scikit Learn (싸이킷런)
labelencoder를 사용하다 보면, new class에 대체하는 방법이 필요하다. 추가적인 클래스로 학습하기 어려운 이유는 뉴럴 네트워크 아키텍처를 학습시킬 때 추가 클래스 없을 때의 인코딩 값이 변하기 때문이다. 그러므로 여기서 대처 방법은 새로운 클래스 같은 경우 적은 클래스일 수 있으니 결측 클래스로 넣는 방법으로 진행한다. (만약 많다면, 다시 학습을 해야 할 필요성이 있을 것이다.) from sklearn.preprocessing import LabelEncoder import numpy as np le = LabelEncoder() a = ["paris", "paris", "tokyo", "amsterdam"] + [np.nan] le.fit(a) le.classes_ 여기에 새로운 클래..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다