논문 리뷰-단일 시맨틱 검색의 한계-On the Theoretical Limitations ofEmbedding-Based Retrieval
·
관심있는 주제/LLM
우연히 유튜브를 보다가 해당 논문을 가지고 소개한 글을 보게 되어, 마침 이 주제에 관심이 있었는데 보게 되었습니다.여기서 읽어보다보니 가장 궁금한 것은 시맨틱 검색이 왜 BM25보다 떨어지는 경우가 많고 그거에 대한 수학적인 근거를 알 수 있고 그러면 질문 유형별로 어떻게 대처하면 좋을 지에 대한 힌트를 얻을 수 있었던 것 같다1. 기초 개념 정리임베딩(Embedding)이란?텍스트를 고정된 차원의 벡터로 변환하는 방식유사한 의미를 가진 문장이나 문서가 가까운 벡터가 되도록 학습됨일반적으로 코사인 유사도로 유사도를 판단함벡터 검색(Vector Search)이란?쿼리도 임베딩 벡터로 만들고 전체 문서 중 가장 가까운 벡터를 찾아서 "관련 문서"로 간주함 “모든 쿼리와 문서를 숫자 벡터 하나로 바꾼 뒤, ..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다