Paper) A Critical Study on Data Leakage in Recommender System Offline Evaluation 리뷰
·
관심있는 주제/Recommendation
정리 추천 모델에서 오프라인 설정에서 평가가 어려움 글로벌 타임 라인을 반영하지 않으면 data leakage 가 발생함. 예측 시간에 따라 교호 작용에서 학습할 수 있게 됨. 모든 모델이 data leakage를 통해 실제 영향을 주는 것을 확인하였음. 모델 BPR, NeuMF, SASRec, LightGCN 사용 데이터 MovieLens-25M, Yelp, Amazon-music, Amazon-eletronic 사용 평가 Leav Last Out 데이터 전략 채택 오프라인 모델 평가에서 타임 라인 방식을 제안 정리하자면... 핵심은 data leakage를 방지하기 위해선 time context를 반영하는 data split 전략을 해야 한다. 그렇지 않으면, 모델의 성능에 많은 영향을 줄 수 있고,..
Paper) 추천 알고리즘들의 Data Split 전략에 대한 논문 리뷰
·
관심있는 주제/Recommendation
논문 제목 A Critical Study on Data Leakage in Recommender System Offline Evaluation 추천 시스템에서는 데이터 분리 전략에 대해서 다소 난해한 점이 있는 것 같아. 특정 논문을 리뷰하고자 한다. 결론적으로는 알고리즘에 따라 데이터 분리 전략에 따라 성능은 차이가 날 수 있고, 실제 가장 현실적인 전략은 temporal global splitting이라 할 수 있다고 한다. 서론 분할 전략에 따라서 추천 시스템의 Rank에 큰 영향을 미칠 수 있다는 것을 주장하는 논문이다. 추천 시스템(RecSys)은 대규모 데이터셋 내에서 사용자가 구매하거나 소비하고 싶은 관심 품목을 가장 효과적으로 찾는 방법을 조사하는 광범위한 연구의 대상이 되어 왔다. 추천은..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다