728x90
Deep dive into Catboost functionalities for model interpretation
Do we really understand what happens inside ML models we build? Let’s explore.
towardsdatascience.com
일단 나중에라도 꼭 볼 것
Catboost를 알고리즘과 해석하는 라이브러리를 결합하여서 설명함.
Code도 있어서 유용함!
https://github.com/catboost/tutorials/blob/master/model_analysis/object_importance_tutorial.ipynb
catboost/tutorials
CatBoost tutorials repository. Contribute to catboost/tutorials development by creating an account on GitHub.
github.com
'포스팅 후보' 카테고리의 다른 글
| Why using a mean for missing data is a bad idea. Alternative imputation algorithms. (0) | 2019.06.30 |
|---|---|
| 7 Tips for Dealing With Small Image Data (0) | 2019.06.30 |
| regularization group lasso for NN (0) | 2019.06.17 |
| 머신러닝에서 데이터가 부족할 때 (0) | 2019.05.18 |
| pandas string one column to multiple columns (0) | 2019.05.14 |