ARIMA 모형의 적합
·
ML(머신러닝)/Time Series
모형 적합 절차에서 ARMA 모형 적합 절차라고 하는 것은 ARMA(P, Q)에서 P, Q를 잘 선택해 가장 적절한 모형을 찾는 것이다 앞에서 배운 비정상(계절성 제외)하고 다 처리를 한 후에 ARMA 모형에 FITTING 시키고 모형 진단에서 잔차 분석 후 옳지 않으면 다시 새로운 P, Q에다가 FITTING 시키고 다시 모형진단 하는 것 반복한다. 모형의 식별에서 P,Q 를 간결의 원칙으로 인해 P 안정화 시켜줘야한다 (Log 이용) 분산이 일정해도 그 수준이 변하면 -> 적절한 차분 을 해야한다. 차분을 너무 많이 하면 앞에서 말한 듯이 분산이 너무 커져서 -> 쓸모없는 모형 예측이 나온다. 언제까지 차분을 하나면 -> 차분을 해도 1. 추세가 계절성이 존재한다. 2. SACF가 천천히 감소한다. ..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다