지도학습 결정트리 앙상블(Randomforest, Gradient Boosting)
·
ML(머신러닝)/Tree Based Model
도움이 되셨다면, 광고 한번만 눌러주세요. 블로그 관리에 큰 힘이 됩니다 ^^ 결정 트리 1. 분류 / 2. 회귀모델 결정에 다다를 때까지 예/아니오 질문 이어가면서 학습 구분 예제는 예/아니오 연속적인 데이터에 적용한 테스트는 " 특성 i는 값 a 보다 큰가? " 계측적으로 영역을 분할해가는 알고리즘 ## 복잡도 제어하기 모든 leaf node 가 순수 노드가 될 때까지 진행하면 -> 과대적합 발생 (훈련 세트 100% 정확하게) -> 이상치에 너무 민감 과대 적합 막는 전략 크게 2가지 1) 사전 가지치기 -> 일찍 중단하는 전략 2) 데이터 포인트가 적은 노드를 삭제하거나 병합하는 전략(사후 가지치기) 1) 사전 가지치기 방법 트리의 최대 깊이나 리프의 최대 개수를 제한하거나 또는 노드를 분할하기 ..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다