[RL ENV] 강화학습 자동차 환경
2021. 1. 5. 21:13ㆍ관심있는 주제/RL
자율주행을 강화학습으로 해보고 싶은 사람들에게 유용한 환경일 것 같아서 공유합니다.
https://decisionforce.github.io/pgdrive/
github.com/decisionforce/pgdrive/releases/download/pgdrive-0.1.1/BIG.mp4
paper | code |
arxiv.org/pdf/2012.13681.pdf | github.com/decisionforce/pgdrive |
import pgdrive # Import this package to register the environment! import gym env = gym.make("PGDrive-v0", config=dict(use_render=True)) # env = pgdrive.PGDriveEnv(config=dict(environment_num=100)) # Or build environment from class env.reset() for i in range(1000): obs, reward, done, info = env.step(env.action_space.sample()) # Use random policy env.render() if done: env.reset() env.close()
simple car env
https://github.com/eleurent/highway-env
728x90
'관심있는 주제 > RL' 카테고리의 다른 글
[Review] CURL: Contrastive Unsupervised Representations for Reinforcement Learning (0) | 2021.02.13 |
---|---|
Bellman Equation (Value Function, Q Function) 써보기 (0) | 2021.01.16 |
[Research] Action Space 관련 자료 조사 (0) | 2021.01.03 |
[Review] Imitation Learning with Concurrent Actions in 3D Games (0) | 2021.01.03 |
[Review] POMO: Policy Optimization with Multiple Optimafor Reinforcement Learnin (0) | 2020.12.18 |