[Pytorch] How to Apply the Weight Initialization (Code)

2020. 12. 17. 18:01분석 Python/Pytorch

728x90
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm") != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
netD.apply(weights_init)

docs.ray.io/en/master/tune/tutorials/tune-advanced-tutorial.html

 

Guide to Population Based Training (PBT) — Ray v1.2.0.dev0

PBT starts by training many neural networks in parallel with random hyperparameters, using information from the rest of the population to refine these hyperparameters and allocate resources to promising models. Let’s walk through how to use this algorith

docs.ray.io

 

728x90

데이터분석뉴비님의
글이 좋았다면 응원을 보내주세요!