2020. 9. 6. 13:13ㆍ관심있는 주제/RL
Create Environment 참고
gym 공식 문서
https://github.com/openai/gym/blob/master/docs/creating-environments.md
https://stackoverflow.com/questions/45068568/how-to-create-a-new-gym-environment-in-openai
gym-foo/
README.md
setup.py
gym_foo/
__init__.py
envs/
__init__.py
foo_env.py
foo_extrahard_env.py
#############################
class FooEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self):
pass
def _step(self, action):
"""
Parameters
----------
action :
Returns
-------
ob, reward, episode_over, info : tuple
ob (object) :
an environment-specific object representing your observation of
the environment.
reward (float) :
amount of reward achieved by the previous action. The scale
varies between environments, but the goal is always to increase
your total reward.
episode_over (bool) :
whether it's time to reset the environment again. Most (but not
all) tasks are divided up into well-defined episodes, and done
being True indicates the episode has terminated. (For example,
perhaps the pole tipped too far, or you lost your last life.)
info (dict) :
diagnostic information useful for debugging. It can sometimes
be useful for learning (for example, it might contain the raw
probabilities behind the environment's last state change).
However, official evaluations of your agent are not allowed to
use this for learning.
"""
self._take_action(action)
self.status = self.env.step()
reward = self._get_reward()
ob = self.env.getState()
episode_over = self.status != hfo_py.IN_GAME
return ob, reward, episode_over, {}
def _reset(self):
pass
def _render(self, mode='human', close=False):
pass
def _take_action(self, action):
pass
def _get_reward(self):
""" Reward is given for XY. """
if self.status == FOOBAR:
return 1
elif self.status == ABC:
return self.somestate ** 2
else:
return 0
gym 환경 예제들
https://github.com/openai/gym/tree/master/gym/envs#how-to-create-new-environments-for-gym
좋은 예제라고 함.
https://github.com/openai/gym-soccer/blob/master/gym_soccer/envs/soccer_env.py
stable-baselines에서 정의한 가상 환경
https://stable-baselines.readthedocs.io/en/master/guide/custom_env.html
import gym
from gym import spaces
class CustomEnv(gym.Env):
"""Custom Environment that follows gym interface"""
metadata = {'render.modes': ['human']}
def __init__(self, arg1, arg2, ...):
super(CustomEnv, self).__init__()
# Define action and observation space
# They must be gym.spaces objects
# Example when using discrete actions:
self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS)
# Example for using image as input:
self.observation_space = spaces.Box(low=0, high=255,
shape=(HEIGHT, WIDTH, N_CHANNELS), dtype=np.uint8)
def step(self, action):
...
return observation, reward, done, info
def reset(self):
...
return observation # reward, done, info can't be included
def render(self, mode='human'):
...
def close (self):
...
rllib에서 정의한 환경
https://docs.ray.io/en/latest/rllib-env.html
import gym, ray
from ray.rllib.agents import ppo
class MyEnv(gym.Env):
def __init__(self, env_config):
self.action_space = <gym.Space>
self.observation_space = <gym.Space>
def reset(self):
return <obs>
def step(self, action):
return <obs>, <reward: float>, <done: bool>, <info: dict>
거의 비슷한 것을 알 수 있음.
https://www.quora.com/How-can-one-create-their-own-reinforcement-learning-environment-in-Python
import gym
from gym import error, spaces, utils
from gym.utils import seeding
class FooEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self):
...
def step(self, action):
...
def reset(self):
...
def render(self, mode='human'):
...
def close(self):
...
Environment의 인풋 아웃풋 확인
import gym
env = gym.make("CartPole-v1")
observation = env.reset()
for _ in range(1000):
env.render()
action = env.action_space.sample() # your agent here (this takes random actions)
observation, reward, done, info = env.step(action)
if done:
observation = env.reset()
env.close()
rllib custon env 만들 때 참고하기
docs.ray.io/en/latest/rllib-env.html
import gym
from gym.utils import seeding
class Example_v0 (gym.Env):
# possible actions
MOVE_LF = 0
MOVE_RT = 1
# possible positions
LF_MIN = 1
RT_MAX = 10
# land on the GOAL position within MAX_STEPS steps
MAX_STEPS = 10
# possible rewards
REWARD_AWAY = -2
REWARD_STEP = -1
REWARD_GOAL = MAX_STEPS
metadata = {
"render.modes": ["human"]
}
def __init__ (self):
# the action space ranges [0, 1] where:
# `0` move left
# `1` move right
self.action_space = gym.spaces.Discrete(2)
# NB: Ray throws exceptions for any `0` value Discrete
# observations so we'll make position a 1's based value
self.observation_space = gym.spaces.Discrete(self.RT_MAX + 1)
# possible positions to chose on `reset()`
self.goal = int((self.LF_MIN + self.RT_MAX - 1) / 2)
self.init_positions = list(range(self.LF_MIN, self.RT_MAX))
self.init_positions.remove(self.goal)
# NB: change to guarantee the sequence of pseudorandom numbers
# (e.g., for debugging)
self.seed()
self.reset()
def reset (self):
"""
Reset the state of the environment and returns an initial observation.
Returns
-------
observation (object): the initial observation of the space.
"""
self.position = self.np_random.choice(self.init_positions)
self.count = 0
# for this environment, state is simply the position
self.state = self.position
self.reward = 0
self.done = False
self.info = {}
return self.state
def step (self, action):
"""
The agent takes a step in the environment.
Parameters
----------
action : Discrete
Returns
-------
observation, reward, done, info : tuple
observation (object) :
an environment-specific object representing your observation of
the environment.
reward (float) :
amount of reward achieved by the previous action. The scale
varies between environments, but the goal is always to increase
your total reward.
done (bool) :
whether it's time to reset the environment again. Most (but not
all) tasks are divided up into well-defined episodes, and done
being True indicates the episode has terminated. (For example,
perhaps the pole tipped too far, or you lost your last life.)
info (dict) :
diagnostic information useful for debugging. It can sometimes
be useful for learning (for example, it might contain the raw
probabilities behind the environment's last state change).
However, official evaluations of your agent are not allowed to
use this for learning.
"""
if self.done:
# code should never reach this point
print("EPISODE DONE!!!")
elif self.count == self.MAX_STEPS:
self.done = True;
else:
assert self.action_space.contains(action)
self.count += 1
if action == self.MOVE_LF:
if self.position == self.LF_MIN:
# invalid
self.reward = self.REWARD_AWAY
else:
self.position -= 1
if self.position == self.goal:
# on goal now
self.reward = self.REWARD_GOAL
self.done = 1
elif self.position < self.goal:
# moving away from goal
self.reward = self.REWARD_AWAY
else:
# moving toward goal
self.reward = self.REWARD_STEP
elif action == self.MOVE_RT:
if self.position == self.RT_MAX:
# invalid
self.reward = self.REWARD_AWAY
else:
self.position += 1
if self.position == self.goal:
# on goal now
self.reward = self.REWARD_GOAL
self.done = 1
elif self.position > self.goal:
# moving away from goal
self.reward = self.REWARD_AWAY
else:
# moving toward goal
self.reward = self.REWARD_STEP
self.state = self.position
self.info["dist"] = self.goal - self.position
try:
assert self.observation_space.contains(self.state)
except AssertionError:
print("INVALID STATE", self.state)
return [self.state, self.reward, self.done, self.info]
def render (self, mode="human"):
"""Renders the environment.
The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:
- human: render to the current display or terminal and
return nothing. Usually for human consumption.
- rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.
- ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).
Note:
Make sure that your class's metadata 'render.modes' key includes
the list of supported modes. It's recommended to call super()
in implementations to use the functionality of this method.
Args:
mode (str): the mode to render with
"""
s = "position: {:2d} reward: {:2d} info: {}"
print(s.format(self.state, self.reward, self.info))
def seed (self, seed=None):
"""Sets the seed for this env's random number generator(s).
Note:
Some environments use multiple pseudorandom number generators.
We want to capture all such seeds used in order to ensure that
there aren't accidental correlations between multiple generators.
Returns:
list<bigint>: Returns the list of seeds used in this env's random
number generators. The first value in the list should be the
"main" seed, or the value which a reproducer should pass to
'seed'. Often, the main seed equals the provided 'seed', but
this won't be true if seed=None, for example.
"""
self.np_random, seed = seeding.np_random(seed)
return [seed]
def close (self):
"""Override close in your subclass to perform any necessary cleanup.
Environments will automatically close() themselves when
garbage collected or when the program exits.
"""
pass
github.com/ray-project/ray/blob/master/rllib/examples/custom_env.py
www.datahubbs.com/building-custom-gym-environments-for-rl/
rllib 참고
def env_creator(env_name):
if env_name == 'MyEnv-v0':
from custom_gym.envs.custom_env import CustomEnv0 as env
elif env_name == 'MyEnv-v1':
from custom_gym.envs.custom_env import CustomEnv1 as env
else:
raise NotImplementedError
return env
env_name = 'MyEnv-v0'
config = {
# Whatever config settings you'd like...
}
trainer = agents.ppo.PPOTrainer(
env=env_creator(env_name),
config=config)
max_training_episodes = 10000
while True:
results = trainer.train()
# Enter whatever stopping criterion you like
if results['episodes_total'] >= max_training_episodes:
break
print('Mean Rewards:\t{:.1f}'.format(results['episode_reward_mean']))
R에서는 비슷하게 함수로 제공한다. ㄷㄷㄷ
https://rdrr.io/github/markdumke/reinforcelearn/man/makeEnvironment.html
(유튜브에는 여러 다른 강화학습 알고리즘의 코드를 보여주는 듯함)
https://towardsdatascience.com/create-your-own-reinforcement-learning-environment-beb12f4151ef
https://github.com/sungreong/gym-soccer/blob/master/gym_soccer/envs/soccer_env.py
'관심있는 주제 > RL' 카테고리의 다른 글
[RL] RL이 다른 ML가 다른 점을 보여주는 참고 자료들 (0) | 2020.09.06 |
---|---|
[RL] Great Reward Function 만들 때 참고 (0) | 2020.09.06 |
[RL] Continuous Action 일 때 참고 (A2C) (0) | 2020.09.06 |
N-STEP On-Policy SARSA, N-STEP Off-Policy SARSA wiht Importance Sampling, N-STEP Expected SARA 코드 비교해보기 (0) | 2020.07.19 |
강화학습 기초 자료 모음집 (0) | 2020.07.18 |