2020. 9. 1. 22:53ㆍ분석 Python/Data Preprocessing
좋은 자료가 있어서 일단 공유!
brendanhasz.github.io/2019/03/04/target-encoding
Representing Categorical Data with Target Encoding
Representing categorical variables with high cardinality using target encoding, and mitigating overfitting often seen with target encoding by using cross-fold and leave-one-out schemes.
brendanhasz.github.io
https://zzsza.github.io/data/2018/09/08/feature-engineering/
Advanced Feature Engineering with Kaggle
Coursera 강의인 How to Win a Data Science Competition: Learn from Top Kaggler, Feature engineering part1, 2를 듣고 정리한 내용입니다
zzsza.github.io
https://dailyheumsi.tistory.com/120
Categorical Value Encoding 과 Mean Encoding
이번 글에서는, 가장 인기있는 Categorical Value Encoding 을 하나씩 정리해보려고 한다. 다음의 내용을 다룬다. One-hot Encoding Label Encoding Mean Encoding 특히 마지막에 3.Mean Encoding 은 최근 Kaggler..
dailyheumsi.tistory.com
해보고 싶은 것 (베이지안 방법론)
www.kaggle.com/mmotoki/hierarchical-bayesian-target-encoding
Hierarchical Bayesian Target Encoding
Explore and run machine learning code with Kaggle Notebooks | Using data from ASHRAE - Great Energy Predictor III
www.kaggle.com
github.com/aslakey/CBM_Encoding
aslakey/CBM_Encoding
CBM Encoding. Contribute to aslakey/CBM_Encoding development by creating an account on GitHub.
github.com
'분석 Python > Data Preprocessing' 카테고리의 다른 글
[머신러닝][전처리] 변수 이산화(Discretization) 방법 (0) | 2022.07.09 |
---|---|
[Survey] Feature Engineering in AutoML 리뷰 (0) | 2020.11.07 |
sklearn ColumnsTransformer 및 변수별로 전처리 적용하는 예시 (0) | 2020.05.02 |
[변수 선택] Boruta 와 Lightgbm(rf)을 사용 (0) | 2020.04.24 |
Data Preprocessing 잡생각 (0) | 2020.04.19 |