Paper) Deep Neural Decision Forests 정리
기존의 randomforest 같은 경우 데이터의 주요 변동 요인을 포착하는 데 도움이 되는 내부 표현을 효율적으로 학습하는 메커니즘이 부족하다. 본 연구에서는 의사결정 트리의 divide and conquer 원칙을 통해 심층 아키텍처에서 representation learning에서 매력적인 속성을 통합하는 새로운 접근 방식인 Deep Neural Decision Forests을 제시함. 이 논문에서 우리는 (심층) 컨볼루션 네트워크에서 end to end 학습을 위한 대체 분류기로 사용할 수 있는 확률적이고 차별화 가능한 의사 결정 트리를 모델링하고 훈련하는 방법을 보여주었다. 기존의 의사 결정 트리 훈련에 대한 일반적인 접근방식은 일반적으로 탐욕스럽고 국지적인 방식(local manner)으로 작..
2021.12.18