진행중) Model drift 자료 정리
·
관심있는 주제/뉴럴넷 질문
목차 Definition 모델은 생성된 시간때의 변수와 매개 변수를 기반으로 최적화되기 때문에 이는 기계 학습 모델에 문제를 제기합니다. 기계 학습 모델을 개발하는 동안 이루어진 공통적이고 때로는 부정확한 가정은 각 데이터 지점이 독립적이고 동일한 분포(i.i.d) 랜덤 변수라는 것입니다. 어려운 말로 표현하면, 환경의 변화로 인해 모형의 예측 검정력이 저하되어 변수 간의 관계가 저하되는 것을 말합니다. 위의 예를 참조하면 스팸 전자 메일의 표시 변경으로 인해 몇 년 전에 생성된 부정 탐지 모델이 저하될 수 있습니다. 즉, 시간이 지남에 따라서 기계 학습 모델의 정확도의 상실은 모델 드리프트(model drifit)로 정의됩니다. 크게 2가지 광범위한 범주류 분류할 수 있다고 합니다. Concept Dr..
추천) Latent Matrix Factorization - 기본 컨셉 이해
·
관심있는 주제/Recommendation
목차 참고: 추천 시스템의 기본 개념, 추천 시스템의 유형, 경사로 강하, 선형 회귀, 매트릭스 인수화 등과 같은 ML의 기본 개념에 익숙하다고 가정합니다. 2009년 9월 21일, Netflix Competition은 사용자나 영화에 대한 다른 정보 없이 이전 등급을 기준으로 영화에 대한 사용자의 등급을 예측하는 최고의 협업 필터링 알고리즘을 찾기 위해 조직되었습니다. Bell Kor의 Practical Chaos가 이 대회에서 우승하여 백만 달러를 받았다. 그들이 생각해낸 접근법은 잠재 매트릭스 인수분해법(Latent Matrix Factorization)이었습니다. 본 글에서는 Latent Matrix Factorzation에 대한 개념을 이해해보고자 합니다. Latent Matrix Factori..

AI 도구

AI 도구 사이드 패널

아래 AI 서비스 중 하나를 선택하여 블로그를 보면서 동시에 사용해보세요.

API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
API 키를 입력하세요API 키를 저장하려면 저장 버튼을 클릭하세요API 키가 저장되었습니다
URL과 모델을 입력하세요설정을 저장하려면 저장 버튼을 클릭하세요설정이 저장되었습니다