installation) torch_geometric

2021. 4. 13. 22:59관심있는 주제/GNN

CUDA -> cpu, cu101, cu102, cu11로 교체

pip install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
pip install torch-geometric

 

 

PyTorch 1.8.0/1.8.1

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+${CUDA}.html
pip install torch-geometric

PyTorch 1.7.0/1.7.1

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
pip install torch-geometric

CUDA 110 에서 사용하기

pip install torch==1.7.0+cu110 torchvision==0.8.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html;
pip install torch-scatter==2.0.6 -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html;
pip install torch-sparse==0.6.8 -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html;
pip install torch-spline-conv==1.2.1 -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html;
pip install torch-cluster==1.5.9 -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html;
pip install torch-geometric;

 

 

 

test

import torch
from torch_geometric.data import Data


edge_index = torch.tensor([[0, 2, 1, 0, 3],
                           [3, 1, 0, 1, 2]], dtype=torch.long)
x = torch.tensor([[2,1], [5,6], [3,7], [12,0]], dtype=torch.float)
y = torch.tensor([0, 1, 0, 1], dtype=torch.float)

edge_index = torch.tensor([[0, 2, 1, 0, 3],
                           [3, 1, 0, 1, 2]], dtype=torch.long)

data = Data(x=x, y=y, edge_index=edge_index)
data

 

class TestDataset(InMemoryDataset):
	def __init__(self, data_list):
    	super(TestDataset, self).__init__('/tmp/TestDataset')
        self.data, self.slices = self.collate(data_list)

x = torch.Tensor([[1], [1], [1]])
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
face = torch.tensor([[0], [1], [2]])
i = 1
s = '1'

data1 = Data(x=x, edge_index=edge_index, face=face, test_int=i, test_str=s)
data1.num_nodes = 10

data2 = Data(x=x, edge_index=edge_index, face=face, test_int=i, test_str=s)
data2.num_nodes = 5

dataset = TestDataset([data1, data2])

 

import torch
from torch_geometric.data import InMemoryDataset, download_url


class MyOwnDataset(InMemoryDataset):
    def __init__(self, root, transform=None, pre_transform=None):
        super(MyOwnDataset, self).__init__(root, transform, pre_transform)
        self.data, self.slices = torch.load(self.processed_paths[0])

    @property
    def raw_file_names(self):
        return ['some_file_1', 'some_file_2', ...]

    @property
    def processed_file_names(self):
        return ['data.pt']

    def download(self):
        # Download to `self.raw_dir`.
        download_url(url, self.raw_dir)
        ...

    def process(self):
        # Read data into huge `Data` list.
        data_list = [...]

        if self.pre_filter is not None:
            data_list = [data for data in data_list if self.pre_filter(data)]

        if self.pre_transform is not None:
            data_list = [self.pre_transform(data) for data in data_list]

        data, slices = self.collate(data_list)
        torch.save((data, slices), self.processed_paths[0])

 

 

 

github.com/rusty1s/pytorch_geometric

 

rusty1s/pytorch_geometric

Geometric Deep Learning Extension Library for PyTorch - rusty1s/pytorch_geometric

github.com

 

pytorch.org/

 

PyTorch

An open source deep learning platform that provides a seamless path from research prototyping to production deployment.

pytorch.org

github.com/rusty1s/pytorch_geometric/issues/1119

 

How to install newest torch_geometric with conda environment? · Issue #1119 · rusty1s/pytorch_geometric

📚 Installation Environment OS: Python version: PyTorch version: CUDA/cuDNN version: GCC version: How did you try to install PyTorch Geometric and its extensions (pip, source): Any other relevant in...

github.com

github.com/rusty1s/pytorch_geometric/tree/master/examples

 

728x90