memory profiler 를 활용해서 메모리 사용량 확인하기

2021. 3. 5. 23:21꿀팁 분석 환경 설정/파이썬 개발 팁

목차

    패키지 설치

    pip install memory_profiler

    실행방법

    memory profiler를 작동하려면 다음과 같이 한다.

    python script가 종료되어야 가능하다.

    python -m memory_profiler test.py

    memory profiler를 logging 하려면 다음과 같이 하면 된다.

    logging은 다음과 같이 하면 된다.

    python -m memory_profiler test.py > ./log.txt

    @profile로 지정하여야 그 부분에 대해서 확인이 된다!

    # imports 
    from memory_profiler import profile 
    import requests 
      
    class BaseExtractor: 
        # decorator which specifies which 
        # function to monitor 
        @profile
        def parse_list(self, array): 
            
            # create a file object 
            f = open('words.txt', 'w') 
            for word in array: 
                  
                # writing words to file 
                f.writelines(word) 
          
        # decorator which specifies which  
        # function to monitor 
        @profile
        def parse_url(self, url): 
            
            # fetches the response 
            response = requests.get(url).text 
            with open('url.txt', 'w') as f: 
                  
                # writing response to file 
                f.writelines(response)
      
    if __name__ == "__main__": 
          
        # url for word list (huge) 
        url = 'https://raw.githubusercontent.com/dwyl/english-words/master/words.txt'
          
        # word list in array 
        array = ['one', 'two', 'three', 'four', 'five'] 
          
        # initializing BaseExtractor object 
        extractor = BaseExtractor() 
          
        # calling parse_url function 
        extractor.parse_url(url) 
          
        # calling pasrse_list function 
        extractor.parse_list(array)

     

    결과 시각화

     mprof run julia_example.py

    ??.dat 파일이 생성된다고 함.

     mprof plot -o image.png --backend agg

    logging 파일 생성하는 코드

    from memory_profiler import profile
    import logging
    
    # create logger
    logger = logging.getLogger('memory_profile_log')
    logger.setLevel(logging.DEBUG)
    
    # create file handler which logs even debug messages
    fh = logging.FileHandler("memory_profile.log")
    fh.setLevel(logging.DEBUG)
    
    # create formatter
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    fh.setFormatter(formatter)
    
    # add the handlers to the logger
    logger.addHandler(fh)
    
    from memory_profiler import LogFile
    import sys
    sys.stdout = LogFile('memory_profile_log', reportIncrementFlag=False)
    

     

     

     

    결과물 로깅 하는 방법

    profile에 stream을 생성하여, logging 하기

    from memory_profiler import profile
    
    f=open('hi.txt','w+')
    
    @profile(stream=f)
    def my_func():
        a = [1] * (10 ** 6)
        b = [2] * (2 * 10 ** 7)
        del b
        return a
    
    • mprof run: running an executable, recording memory usage
    • mprof plot: plotting one the recorded memory usage (by default, the last one)
    • mprof list: listing all recorded memory usage files in a user-friendly way.
    • mprof clean: removing all recorded memory usage files.
    • mprof rm: removing specific recorded memory usage files

     

    Plot settings

    By default, the command line call is set as the graph title. If you wish to customize it, you can use the -t option to manually set the figure title.

    mprof plot -t 'Recorded memory usage'

    You can also hide the function timestamps using the n flag, such as

    mprof plot -n

    Trend lines and its numeric slope can be plotted using the s flag, such as

    mprof plot -s

     

    >>> # define a simple function
    >>> def f(a, n=100):
        ...     import time
        ...     time.sleep(2)
        ...     b = [a] * n
        ...     time.sleep(1)
        ...     return b
        ...
    >>> from memory_profiler import memory_usage
    >>> memory_usage((f, (1,), {'n' : int(1e6)}))

     

    참고

    https://pythonrepo.com/repo/pythonprofilers-memory_profiler-python-monitoring

     

    Monitor Memory usage of Python code | PythonRepo

    pythonprofilers/memory_profiler, Memory Profiler This is a python module for monitoring memory consumption of a process as well as line-by-line analysis of memory consumption for pyth

    pythonrepo.com

    https://coderzcolumn.com/tutorials/python/how-to-profile-memory-usage-in-python-using-memory-profiler

     

    How to Profile Memory Usage in Python using memory_profiler? by Sunny Solanki

    How to Profile Memory Usage in Python using memory_profiler?

    coderzcolumn.com

     

    728x90