분석 Python/Pytorch
[Pytorch] How to Apply the Weight Initialization (Code)
데이터분석뉴비
2020. 12. 17. 18:01
728x90
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
netD.apply(weights_init)
docs.ray.io/en/master/tune/tutorials/tune-advanced-tutorial.html
Guide to Population Based Training (PBT) — Ray v1.2.0.dev0
PBT starts by training many neural networks in parallel with random hyperparameters, using information from the rest of the population to refine these hyperparameters and allocate resources to promising models. Let’s walk through how to use this algorith
docs.ray.io